Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.955
1.
J Phys Chem Lett ; 15(15): 4047-4055, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38580324

Liquid-liquid phase separation (LLPS) plays a key role in the compartmentalization of cells via the formation of biomolecular condensates. Here, we combined atomistic molecular dynamics (MD) simulations and terahertz (THz) spectroscopy to determine the solvent entropy contribution to the formation of condensates of the human eye lens protein γD-Crystallin. The MD simulations reveal an entropy tug-of-war between water molecules that are released from the protein droplets and those that are retained within the condensates, two categories of water molecules that were also assigned spectroscopically. A recently developed THz-calorimetry method enables quantitative comparison of the experimental and computational entropy changes of the released water molecules. The strong correlation mutually validates the two approaches and opens the way to a detailed atomic-level understanding of the different driving forces underlying the LLPS.


Phase Separation , Water , Humans , Solvents , Entropy , Calorimetry
2.
Sci Rep ; 14(1): 8685, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622354

To understand the effect of protein fusion on the recognition of a peptide-tag by an antibody, we fused a CCR5-derived peptide-tag (pep1) to GFP and investigated its recognition by an anti-pep1 antibody, 4B08. First, to characterize the thermodynamic properties associated with the pep1-4B08 binding, isothermal titration calorimetry experiments were conducted. It was found that pep1 fused to the C-terminus of GFP (GFP-CT) enhanced the enthalpic gain by 2.1 kcal mol-1 and the entropic loss only by 0.9 kcal mol-1, resulting in an 8-fold increase in the binding affinity compared to the unfused pep1. On the other hand, pep1 fused to the N-terminus of GFP (GFP-NT) enhanced the enthalpic gain by 3.0 kcal mol-1 and the entropic loss by 3.2 kcal mol-1, leading to no significant enhancement of the binding affinity. To gain deeper insights, molecular dynamics simulations of GFP-NT, GFP-CT, and pep1 were performed. The results showed that the location of the fusion point sensitively affects the interaction energy, the solvent accessible surface area, and the fluctuation of pep1 in the unbound state, which explains the difference in the experimental thermodynamic properties.


Molecular Dynamics Simulation , Peptides , Proteins , Calorimetry , Antibodies , Thermodynamics
3.
Viruses ; 16(4)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38675834

Tenofovir (TFV) is the active form of the prodrugs tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF), both clinically prescribed as HIV reverse transcriptase inhibitors. The biophysical interactions between these compounds and human serum albumin (HSA), the primary carrier of exogenous compounds in the human bloodstream, have not yet been thoroughly characterized. Thus, the present study reports the interaction profile between HSA and TFV, TDF, and TAF via UV-Vis, steady-state, and time-resolved fluorescence techniques combined with isothermal titration calorimetry (ITC) and in silico calculations. A spontaneous interaction in the ground state, which does not perturb the microenvironment close to the Trp-214 residue, is classified as weak. In the case of HSA/TFV and HSA/TDF, the binding is both enthalpically and entropically driven, while for HSA/TAF, the binding is only entropically dominated. The binding constant (Ka) and thermodynamic parameters obtained via ITC assays agree with those obtained using steady-state fluorescence quenching measurements, reinforcing the reliability of the data. The small internal cavity known as site I is probably the main binding pocket for TFV due to the low steric volume of the drug. In contrast, most external sites (II and III) can better accommodate TAF due to the high steric volume of this prodrug. The cross-docking approach corroborated experimental drug-displacement assays, indicating that the binding affinity of TFV and TAF might be impacted by the presence of different compounds bound to albumin. Overall, the weak binding capacity of albumin to TFV, TDF, and TAF is one of the main factors for the low residence time of these antiretrovirals in the human bloodstream; however, positive cooperativity for TAF and TDF was detected in the presence of some drugs, which might improve their residence time (pharmacokinetic profile).


Anti-HIV Agents , Protein Binding , Reverse Transcriptase Inhibitors , Serum Albumin, Human , Tenofovir , Tenofovir/analogs & derivatives , Humans , Reverse Transcriptase Inhibitors/metabolism , Reverse Transcriptase Inhibitors/chemistry , Tenofovir/metabolism , Tenofovir/chemistry , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Anti-HIV Agents/metabolism , Thermodynamics , Calorimetry , Binding Sites , HIV Infections/virology , HIV Infections/drug therapy , Alanine/metabolism , HIV Reverse Transcriptase/metabolism , HIV Reverse Transcriptase/chemistry
4.
Biochem Biophys Res Commun ; 711: 149908, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38613867

RNA aptamers are oligonucleotides, selected through Systematic Evolution of Ligands by EXponential Enrichment (SELEX), that can bind to specific target molecules with high affinity. One such molecule is the RNA aptamer that binds to a blue-fluorescent Hoechst dye that was modified with bulky t-Bu groups to prevent non-specific binding to DNA. This aptamer has potential for biosensor applications; however, limited information is available regarding its conformation, molecular interactions with the ligand, and binding mechanism. The study presented here aims to biophysically characterize the Hoechst RNA aptamer when complexed with the t-Bu Hoechst dye and to further optimize the RNA sequence by designing and synthesizing new sequence variants. Each variant aptamer-t-Bu Hoechst complex was evaluated through a combination of fluorescence emission, native polyacrylamide gel electrophoresis, fluorescence titration, and isothermal titration calorimetry experiments. The results were used to design a minimal version of the aptamer consisting of only 21 nucleotides. The performed study also describes a more efficient method for synthesizing the t-Bu Hoechst dye derivative. Understanding the biophysical properties of the t-Bu Hoechst dye-RNA complex lays the foundation for nuclear magnetic resonance spectroscopy studies and its potential development as a building block for an aptamer-based biosensor that can be used in medical, environmental or laboratory settings.


Aptamers, Nucleotide , Aptamers, Nucleotide/chemistry , Fluorescent Dyes/chemistry , Nucleic Acid Conformation , Biosensing Techniques/methods , Base Sequence , Spectrometry, Fluorescence/methods , SELEX Aptamer Technique/methods , Calorimetry/methods , RNA/chemistry
5.
Arch Biochem Biophys ; 756: 109995, 2024 Jun.
Article En | MEDLINE | ID: mdl-38621448

T4 polynucleotide kinase (T4 PNK) phosphorylates the 5'-terminus of DNA and RNA substrates. It is widely used in molecular biology. Single nucleotides can serve as substrates if a 3'-phosphate group is present. In this study, the T4 PNK-catalyzed conversion of adenosine 3'-monophosphate (3'-AMP) to adenosine-3',5'-bisphosphate was characterized using isothermal titration calorimetry (ITC). Although ITC is typically used to study ligand binding, in this case the instrument was used to evaluate enzyme kinetics by monitoring the heat production due to reaction enthalpy. The reaction was initiated with a single injection of 3'-AMP substrate into the sample cell containing T4 PNK and ATP at pH 7.6 and 30 °C, and Michaelis-Menten analysis was performed on the reaction rates derived from the plot of differential power versus time. The Michaelis-Menten constant, KM, was 13 µM, and the turnover number, kcat, was 8 s-1. The effect of inhibitors was investigated using pyrophosphate (PPi). PPi caused a dose-dependent decrease in the apparent kcat and increase in the apparent KM under the conditions tested. Additionally, the intrinsic reaction enthalpy and the activation energy of the T4 PNK-catalyzed phosphorylation of 3'-AMP were determined to be -25 kJ/mol and 43 kJ/mol, respectively. ITC is seldom used as a tool to study enzyme kinetics, particularly for technically-challenging enzymes such as kinases. This study demonstrates that quantitative analysis of kinase activity can be amenable to the ITC single injection approach.


Calorimetry , Polynucleotide 5'-Hydroxyl-Kinase , Kinetics , Calorimetry/methods , Polynucleotide 5'-Hydroxyl-Kinase/metabolism , Polynucleotide 5'-Hydroxyl-Kinase/chemistry , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Thermodynamics , Bacteriophage T4/enzymology , Diphosphates/chemistry , Diphosphates/metabolism , Phosphorylation
6.
Chem Commun (Camb) ; 60(32): 4350-4353, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38546190

The binding affinity of pillar[6]MaxQ toward a panel of neuromuscular blockers and neurotransmitters was measured in phosphate buffered saline by isothermal titration calorimetry and 1H NMR spectroscopy. In vivo efficacy studies showed that P6MQ sequesters rocuronium and vecuronium and reverses their influence on the recovery of the train-of-four (TOF) ratio.


Neuromuscular Nondepolarizing Agents , Vecuronium Bromide , Vecuronium Bromide/pharmacology , Rocuronium/pharmacology , Androstanols/pharmacology , Neuromuscular Nondepolarizing Agents/pharmacology , Calorimetry
7.
PLoS One ; 19(3): e0298969, 2024.
Article En | MEDLINE | ID: mdl-38427623

It was recently reported that values of the transition heat capacities, as measured by differential scanning calorimetry, for two globular proteins and a short DNA hairpin in NaCl buffer are essentially equivalent, at equal concentrations (mg/mL). To validate the broad applicability of this phenomenon, additional evidence for this equivalence is presented that reveals it does not depend on DNA sequence, buffer salt, or transition temperature (Tm). Based on the equivalence of transition heat capacities, a calorimetric method was devised to determine protein concentrations in pure and complex solutions. The scheme uses direct comparisons between the thermodynamic stability of a short DNA hairpin standard of known concentration, and thermodynamic stability of protein solutions of unknown concentrations. Sequences of two DNA hairpins were designed to confer a near 20°C difference in their Tm values. In all cases, evaluated protein concentrations determined from the DNA standard curves agreed with the UV-Vis concentration for monomeric proteins. For multimeric proteins evaluated concentrations were greater than determined by UV-Vis suggesting the calorimetric approach can also be an indicator of molecular stoichiometry.


DNA , Proteins , DNA/chemistry , Calorimetry , Thermodynamics , Calorimetry, Differential Scanning , Sodium Chloride
8.
Methods ; 225: 52-61, 2024 May.
Article En | MEDLINE | ID: mdl-38492901

Isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) are two commonly used methods to probe biomolecular interactions. ITC can provide information about the binding affinity, stoichiometry, changes in Gibbs free energy, enthalpy, entropy, and heat capacity upon binding. SPR can provide information about the association and dissociation kinetics, binding affinity, and stoichiometry. Both methods can determine the nature of protein-protein interactions and help understand the physicochemical principles underlying complex biochemical pathways and communication networks. This methods article discusses the practical knowledge of how to set up and troubleshoot these two experiments with some examples.


Calorimetry , Protein Binding , Surface Plasmon Resonance , Thermodynamics , Surface Plasmon Resonance/methods , Calorimetry/methods , Kinetics , Proteins/chemistry , Proteins/metabolism , Protein Interaction Mapping/methods , Entropy
9.
Int J Biol Macromol ; 261(Pt 2): 129943, 2024 Mar.
Article En | MEDLINE | ID: mdl-38311135

Flammability and poor toughness of unmodified PLA limit its applications in various fields. Though ammonium polyphosphate (APP) is a green and effective flame retardant, it has poor compatibility with the matrix, leading to a decrease in mechanical properties. Stereo-complexation greatly improves the strength and heat resistance of traditional PLA. However, the effect of flame retardants on the formation of stereo-complexed crystals and the impact of stereo-complexation on flame retardancy have not been studied previously. In this research, PDLA chains were first in-situ reacted with APP particles for improved interfacial compatibility. By utilizing the characteristic of PLA enantiomers that can form stereo-complexed crystals, near-complete stereo-complexed PLA fibers with flame retardancy were produced via clean and continuous melt spinning. The compatibility between PDLA-g-APP and PLLA matrix was studied by SEM, rheological analyses and DSC. Strength and flexibility of the fibers were simultaneously enhanced compared to traditional PLA due to the synergistic effect of interfacial compatibility and stereo-complexation. Compared to traditional PLA, the peak heat release rate and total heat release in microcalorimetry test were reduced by 33 % and 22 %, respectively. The flame-retardant fibers achieved a V-0 rating in the UL-94 test, and an increase in LOI value from 19.4 % to 28.2 %.


Flame Retardants , Calorimetry , Polyesters , Polyphosphates
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123957, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38310741

The drug pharmacokinetics is affected upon binding with proteins, thus making drug-protein interactions crucial. This study investigated the interaction between enzalutamide and human major antiproteinase alpha-2-macroglobulin (α2M) by using multi spectroscopic and calorimetric techniques. The spectroscopic techniques such as circular dichroism (CD), intrinsic fluorescence, and UV-visible absorption were used to determine the mechanism of enzalutamide-α2M interaction. Studies on the quenching of fluorescence at three different temperatures showed that the enzalutamide-α2M complex is formed through static quenching mechanism. The change in microenvironment around tyrosine residues in protein was detected through synchronised fluorescence. The secondary structure of α2M was slightly altered by enzalutamide according to far UV-CD spectral analysis. Changes in position of amide I band in FTIR spectra further confirm the secondary structural alteration in α2M. According to thermodynamic characteristics such as fluorescence quenching and isothermal titration calorimetry (ITC), hydrogen bonds and hydrophobic interactions were involved in the interaction machanism. The ITC reiterated the exothermic and spontaneous nature of the interaction. The lower proteinase inhibitory activity of the α2M-enzalutamide conjugate as reflects the disruption of the native α2M structure upon interaction with enzalutamide.


Antineoplastic Agents , Benzamides , Phenylthiohydantoin , Pregnancy-Associated alpha 2-Macroglobulins , Humans , Pregnancy , Female , Pregnancy-Associated alpha 2-Macroglobulins/chemistry , Circular Dichroism , Nitriles , Thermodynamics , Protein Binding , Molecular Docking Simulation , Spectrometry, Fluorescence , Calorimetry , Binding Sites
11.
Phys Med Biol ; 69(5)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38346338

Objective.Proton computed tomography (pCT) offers a potential route to reducing range uncertainties for proton therapy treatment planning, however the current trend towards high current spot scanning treatment systems leads to high proton fluxes which are challenging for existing systems. Here we demonstrate a novel approach to energy reconstruction, referred to as 'de-averaging', which allows individual proton energies to be recovered using only a measurement of their integrated energy without the need for spatial information from the calorimeter.Approach.The method is evaluated in the context of the Optimising Proton Therapy through Imaging (OPTIma) system which uses a simple, relatively inexpensive, scintillator-based calorimeter that reports only the integrated energy deposited by all protons within a cyclotron period, alongside a silicon strip based tracking system capable of reconstructing individual protons in a high flux environment. GEANT4 simulations have been performed to examine the performance of such a system at a modern commercial cyclotron facility using aσ≈ 10 mm beam for currents in the range 10-50 pA at the nozzle.Main results.Apart from low-density lung tissue, a discrepancy of less than 1% on the Relative Stopping Power is found for all other considered tissues when embedded within a 150 mm spherical Perspex phantom in the 10-30 pA current range, and for some tissues even up to 50 pA.Significance.By removing the need for the calorimeter system to provide spatial information, it is hoped that the de-averaging approach can facilitate clinically relevant, cost effective and less complex calorimeter systems for performing high current pCTs.


Proton Therapy , Protons , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Calorimetry
12.
Sensors (Basel) ; 24(3)2024 Feb 05.
Article En | MEDLINE | ID: mdl-38339736

Heat flux measurement shows potential for the early detection of infectious growth. Our research is motivated by the possibility of using heat flux sensors for the early detection of infection on aortic vascular grafts by measuring the onset of bacterial growth. Applying heat flux measurement as an infectious marker on implant surfaces is yet to be experimentally explored. We have previously shown the measurement of the exponential growth curve of a bacterial population in a thermally stabilized laboratory environment. In this work, we further explore the limits of the microcalorimetric measurements via heat flux sensors in a microfluidic chip in a thermally fluctuating environment.


Hot Temperature , Microfluidics , Calorimetry , Prostheses and Implants , Early Diagnosis
13.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article En | MEDLINE | ID: mdl-38338688

Chloroquine has been used as a potent antimalarial, anticancer drug, and prophylactic. While chloroquine is known to interact with DNA, the details of DNA-ligand interactions have remained unclear. Here we characterize chloroquine-double-stranded DNA binding with four complementary approaches, including optical tweezers, atomic force microscopy, duplex DNA melting measurements, and isothermal titration calorimetry. We show that chloroquine intercalates into double stranded DNA (dsDNA) with a KD ~ 200 µM, and this binding is entropically driven. We propose that chloroquine-induced dsDNA intercalation, which happens in the same concentration range as its observed toxic effects on cells, is responsible for the drug's cytotoxicity.


Antimalarials , Antineoplastic Agents , Chloroquine/toxicity , DNA/chemistry , Antineoplastic Agents/toxicity , Calorimetry
14.
J Mol Recognit ; 37(2): e3075, 2024 Mar.
Article En | MEDLINE | ID: mdl-38191989

The binding of four alkaloids with human serum albumin (HSA) was investigated by isothermal titration calorimetry (ITC), spectroscopy and molecular docking techniques. The findings demonstrated that theophylline or caffeine can bind to HAS, respectively. The number of binding sites and binding constants are obtained. The binding mode is a static quenching process. The effects of steric hindrance, temperature, salt concentration and buffer solution on the binding indicated that theophylline and HSA have higher binding affinity than caffeine. The fluorescence and ITC results showed that the interaction between HSA and theophylline or caffeine is an entropy-driven spontaneous exothermic process. The hydrophobic force was the primary driving factor. The experimental results were consistent with the molecular docking data. Based on the molecular structures of the four alkaloids, steric hindrance might be a major factor in the binding between HSA and these four alkaloids. This study elucidates the mechanism of interactions between four alkaloids and HSA.


Alkaloids , Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Molecular Docking Simulation , Caffeine , Theophylline , Spectrometry, Fluorescence , Thermodynamics , Binding Sites , Calorimetry/methods , Protein Binding , Circular Dichroism
15.
Med Phys ; 51(5): 3758-3765, 2024 May.
Article En | MEDLINE | ID: mdl-38295013

BACKGROUND: The interest of using fiber Bragg gratings (FBGs) dosimeters in radiotherapy (RT) lies in their (i) microliter detection volume, (ii) customizable spatial resolution, (iii) multi-point dose measurement, (iv) real-time data acquisition and (v) insensitivity to Cherenkov light. These characteristics could prove very useful for characterizing dose distributions of small and nonstandard fields with high spatial resolution. PURPOSE: We developed a multi-point FBGs dosimeter customized for small field RT dosimetry with a spatial resolution of ∼ $\sim$ 1 mm. METHODS: The 3 cm-long multi-point dosimeter is made by embedding a 80 µ m $\umu{\rm {m}}$ silica fiber containing an array of thirty (30) co-located ∼ $\sim$ 1 mm-long fs-written FBGs inside a plastic cylinder with an UV curing optical adhesive. With its higher thermal expansion coefficient, the plastic cylinder increases the sensitivity of the dosimeter by stretching the fiber containing the FBGs when the temperature rises slightly due to radiation energy deposition. Irradiations (2000 MU at 600 MU/min) were performed with a Varian TrueBeam linear accelerator. RESULTS: The dose profile of a 2  × $ \times$ 2 cm 2 $^{2}$ 6 MV beam was measured with a mean relative difference of 1.8% (excluding the penumbra region). The measured output factors for a 6 MV beam are in general agreement with the expected values within the experimental uncertainty (except for the 2  × $\,\times $ 2 cm 2 $^{2}$ field). The detector response to different energy of photon and electron beams is within 5% of the mean response ( 0.068 ± 0.002 $0.068\pm 0.002$  pm/Gy). The calorimeter's post-irradiation thermal decay is in agreement with the theory. CONCLUSIONS: An energy-independent small field calorimeter that allows dose profile and output factor measurements for RT using FBGs was developed, which, to our knowledge, has never been done before. This type of detector could prove really useful for small field dosimetry, but also potentially for MRI-LINAC since FBGs are insensitive to magnetic fields and for FLASH since FBGs have been used to measure doses up to 100 kGy.


Radiometry , Radiometry/instrumentation , Calorimetry/instrumentation , Optical Fibers , Radiotherapy/instrumentation , Equipment Design , Radiotherapy Dosage
16.
Int J Biol Macromol ; 259(Pt 1): 129143, 2024 Feb.
Article En | MEDLINE | ID: mdl-38176484

In this work we have studied the interaction of the food dye Indigo-Carmine (IndC) with the most studied model transport proteins i.e. human and bovine serum albumin (HSA & BSA). A multispectroscopic approach was used to analyze the details of the binding process. The intrinsic fluorescence of both the albumins was significantly quenched by IndC and the quenching was both static and dynamic in nature with the former being dominant. The HSA-lndC and BSA-IndC distance after complexation was determined by Förster resonance energy transfer (FRET) method which suggested efficient energy transfer from the albumins to IndC. Thermodynamics of serum protein-IndC complexation was estimated by isothermal titration calorimetry (ITC) which revealed that the binding was enthalpy driven. Circular dichroism (CD) and FTIR spectroscopy revealed that the binding of IndC induced secondary structural changes in both the serum proteins. Synchronous and 3D fluorescence spectroscopy revealed that the binding interaction caused microenvironmental changes of protein fluorophores. Molecular docking analysis suggested that hydrogen bonding and hydrophobic interactions are the major forces involved in the complexation process.


Food Coloring Agents , Indigo Carmine , Humans , Molecular Docking Simulation , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence/methods , Fluorescence Resonance Energy Transfer , Circular Dichroism , Thermodynamics , Calorimetry , Protein Binding , Binding Sites
17.
Int J Biol Macromol ; 259(Pt 2): 129297, 2024 Feb.
Article En | MEDLINE | ID: mdl-38211927

Importance of metal ion selectivity in biomolecules and their key role in proteins are widely explored. However, understanding the thermodynamics of how hydrated metal ions alter the protein hydration and their conformation is also important. In this study, the interaction of some biologically important Ca2+, Mn2+, Co2+, Cu2+, and Zn2+ ions with hen egg white lysozyme at pH 2.1, 3.0, 4.5 and 7.4 has been investigated. Intrinsic fluorescence studies have been employed for metal ion-induced protein conformational changes analysis. Thermostability based on protein hydration has been investigated using differential scanning calorimetry (DSC). Thermodynamic parameters emphasizing on metal ion-protein binding mechanistic insights have been well discussed using isothermal titration calorimetry (ITC). Overall, these experiments have reported that their interactions are pH-dependent and entropically driven. This research also reports the strongly hydrated metal ions as water structure breaker unlike osmolytes based on DSC studies. These experimental results have highlighted higher concentrations of different metal ions effect on the protein hydration and thermostability which might be helpful in understanding their interactions in aqueous solutions.


Egg White , Muramidase , Muramidase/metabolism , Metals/metabolism , Proteins , Thermodynamics , Ions , Calorimetry/methods , Hydrogen-Ion Concentration
18.
Food Res Int ; 177: 113855, 2024 Feb.
Article En | MEDLINE | ID: mdl-38225130

Interaction of bovine ß-lactoglobulin (BLG) with several flavor compounds (FC) (2-methylpyrazine, vanillin, 2-acetylpyridine, 2- and 3-acetylthiophene, methyl isoamyl ketone, heptanone, octanone, and nonanone) was studied by high-sensitivity differential scanning calorimetry. The denaturation temperature, enthalpy, and heat capacity increment were determined at different FC concentrations. It was found that the denaturation temperature and heat capacity increment do not depend on the FC concentration, while the denaturation enthalpy decreases linearly with the FC concentration. These thermodynamic effects disclose the preferential FC binding to the unfolded form of BLG. By the obtained calorimetric data, the free energies of FC binding vs. the FC concentrations were calculated. These dependences were shown to be linear. Their slope relates closely to the overall FC affinity for the unfolded BLG in terms of the Langmuir binding model. The overall BLG affinity for FC varies from 20 M-1 (2-methylpyrazine) up to 360 M-1(nonanone). The maximal stoichiometry of the BLG-FC complexes was roughly estimated as a ratio of the length of the unfolded BLG to the molecular length of FC. Using these estimates, the apparent BLG-FC binding constants were determined. They are in the range of 0.3-8.0 M-1 and correlated strictly with the FC lipophilicity descriptor (logP).


Hot Temperature , Lactoglobulins , Animals , Cattle , Lactoglobulins/chemistry , Calorimetry , Thermodynamics , Entropy , Ketones
19.
Biochem Biophys Res Commun ; 695: 149467, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38211531

Staphylococcus aureus (S. aureus), a Gram-positive bacterium, causes a wide range of infections, and diagnosis at an early stage is challenging. Targeting the maltodextrin transporter has emerged as a promising strategy for imaging bacteria and has been able to image a wide range of bacteria including S. aureus. However, little is known about the maltodextrin transporter in S. aureus, and this prevents new S. aureus specific ligands for the maltodextrin transporter from being developed. In Gram-positive bacteria, including S. aureus, the first step of maltodextrin transport is the binding of the maltodextrin-binding protein malE to maltodextrins. Thus, understanding the binding affinity and characteristics of malE from S. aureus is important to developing efficient maltodextrin-based imaging probes. We evaluated the affinity of malE of S. aureus to maltodextrins of various lengths. MalE of S. aureus (SAmalE) was expressed in E. coli BL21(DE3) and purified by Ni-NTA resin. The affinities of SAmalE to maltodextrins were evaluated with isothermal titration calorimetry. SAmalE has low affinity to maltose but binds to maltotriose and longer maltodextrins up to maltoheptaose with affinities up to Ka = 9.02 ± 0.49 × 105 M-1. SAmalE binding to maltotriose-maltoheptaose was exothermic and fit a single-binding site model. The van't Hoff enthalpy in the binding reaction of SAmalE with maltotriose was 9.9 ± 1.3 kcal/mol, and the highest affinity of SAmalE was observed with maltotetraose with Ka = 9.02 ± 0.49 × 105 M-1. In the plot of ΔH-T*ΔS, the of Enthalpy-Entropy Compensation effect was observed in binding reaction of SAmalE to maltodextrins. Acarbose and maltotetraiol bind with SAmalE indicating that SAmalE is tolerant of modifications on both the reducing and non-reducing ends of maltodextrins. Our results show that unlike ECmalE and similar to the maltodextrin binding protein of Streptococci, SAmalE primarily binds to maltodextrins via hydrogen bonds. This is distinct from the maltodextrin binding protein of Streptococci, SAmalE that binds to maltotetraiol with high affinity. Understanding the binding characteristics and tolerance to maltodextrins modifications by maltodextrin binding proteins will hopefully provide the basis for developing bacterial species-specific maltodextrin-based imaging probes.


Carrier Proteins , Staphylococcus aureus , Carrier Proteins/metabolism , Staphylococcus aureus/metabolism , Escherichia coli/metabolism , Oligosaccharides/metabolism , Bacterial Proteins/metabolism , Polysaccharides/metabolism , Membrane Transport Proteins/metabolism , Calorimetry , Protein Binding
20.
Biomacromolecules ; 25(2): 903-923, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38170471

Stimuli-responsive microgels with ionizable functional groups offer versatile applications, e.g., by the uptake of oppositely charged metal ions or guest molecules such as drugs, dyes, or proteins. Furthermore, the incorporation of carboxylic groups enhances mucoadhesive properties, crucial for various drug delivery applications. In this work, we successfully synthesized poly{N-vinylcaprolactam-2,2'-[(5-acrylamido-1-carboxypentyl)azanediyl]diacetic acid} [p(VCL/NTAaa)] microgels containing varying amounts of nitrilotriacetic acid (NTA) using precipitation polymerization. We performed fundamental characterization by infrared (IR) spectroscopy and dynamic and electrophoretic light scattering. Despite their potential multiresponsiveness, prior studies on NTA-functionalized microgels lack in-depth analysis of their stimuli-responsive behavior. This work addresses this gap by assessing the microgel responsiveness to temperature, ionic strength, and pH. Morphological investigations were performed via NMR relaxometry, nanoscale imaging (AFM and SEM), and reaction calorimetry. Finally, we explored the potential application of the microgels by conducting cytocompatibility experiments and demonstrating the immobilization of the model protein cytochrome c in the microgels.


Microgels , Microgels/chemistry , Nitrilotriacetic Acid , Drug Delivery Systems , Temperature , Calorimetry
...